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SUMMARY

A practical method for solving plastic deformation problems in the
elastic-plestic range is presented. The method is one of successlive
spproximations snd is illustrated by four examples which include a flat
plate with temperature distribution across the width, a thin shell with
axial temperature distribution, a solid cylinder with radial temperature
distribution, and a rotating disk with radial temperature distribution.

INTRODUCTION

The calculation of stresses in structursel components in which plas-
tic flow is considered is currently of great interest in order to take
full adventage of the load-carrying capacity of avaeilable materials.
Little attention, however, has been directed at providing simple, general
methods which can be spplied by the engineer toward the solution of prac-
tical problems. This report presents such a method and its applications
to several problems of current interest. Although use is made of a
technique arising in the theory of integral equatioms, no knowledge of
integral equations is required, and the mathematice involved is well
within the scope of the practicing engineer.

The method, which is one of successive integrations, is illustrated
for four different thermal stress problems which include the flat plate
with tempersture variation along the width, the thin cylindrical shell
with axial temperature distribution, the solid cylinder with radial tem-
perature distribution, and the roteting disk with radisl temperature dis-
tribution. The techniques illustrated are not, however, limited %o ther-
mal stress problems. The first three problems considered involve small
plastic strains, that is, on the same order of magnitude as the elastic
strains. The fourth problem involves strains on the order of 1 percent.
The deformation theory of plasticity with the Von Mises yield condition
is used. Other yield conditions, however, could be used.
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METHOD

The determination of stresses and strains in a body consists of com-
bining the equations of equilibrium and compatibility with the "stress-
strain” relstion and integrating the resulting equations. For both elas-
tic and plastic problems the same equations result for equilibrium and
campatibility; the difference in the two cases consists of the stress-
strain relstion. In the elastic cese a lineaxr relation epplies between
stress and strain, thus resulting in linear differential equations which
can be solved by standard methods. The occurrence of plastic flow great-
ly complicetes the problem by introducing a nonlinear stress-strain rela-
tion resulting in a nonlinesr differential equation for which direct
solutions may be difficult or impossible to obtain. The present report
demonstretes a relatively simple method for obtaining approximate solu-
tions to the resulting nonlinear differential equations whereby the eque-
tions are first converted to nonlinear integral equations end then solved
by the established mathematical technique of successive integrations.

The principle underlying the successive integration method of the
solution of plastic flow problems can best be illustrabted by an example
which is trested in greater detail in the section EXAMPIES. For a flat
plate subject to a temperature varistion alomg the chord

T = 600(y% - 1/3) + Ty the total strain € due to stress is given by

1
€ = -0.00570(y% - 1/3) + f Cep (1)
o

where the plastic strain eep is & function of the totel strain €
(fig. 1). (All symbols are defined in appendix A.)

A convenilent method for solving equation (1)} is to approach the
solution in successive steps by organizing the computations so that the
botherscme nonlinear terms are treated not as unknowns but as known
quentities determinable from a previous iteration. For example, as a
zeroth approximetion, let it be assumed that e€gn = O for all values of

y. Then equation (1) permits direct computation of, e for all values
of y. Once the total strain € i1s determined, the plastic component

of the strain eep may be obtalned by inspection of the stress-strain

curve (fig. 1) or by simple computation. It is thus possible in the next
computation to include the €ep terms as determined from the first com-

putation, and thus somewhat more accurate values of € can be obtained.
These in turn lesd to more accurate values of €ep> and the process is
repeated, each time with the plastic straln terms determined in the pre-

vious iteratiom being treated as known quentities. When successive lter-
ations lead to no change in € or eep, 1t manifestly makes no difference

iﬁAﬁn
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whether the € terms apply to the current or previous iteration.

Equation (1) is now satisfied to the desired degree of accuracy, and the
correct solution 1is therefore obtained.

The simple example of the flat plate Jjust illustrated involves uni-
axlial stress, hence it is possible to determine directly plastic strain
once the total strains are known. In most cases of practical interest
the stresses are biaxial or triaxisel, and the formal procedure for carry-
ing through the computations cen be illustrated by referring to the case
of the long solid cylinder with radial temperature distribution, which is
also treated in greater detail in the section Long Solid Cylinder. By
manipulating the equilibrium and compatibility equations and the stress-
strain relations, expressions for the total strains in three principal
directions are derived in integral equation forms of the type

I
€ = f(r) +£ g(r;e_[-:eaJez:erP:eep)dl' (2)

with similar expressions for € and ¢€,. If an attempt is made to write

8 direct relation between the elastic and plastic streins derived from
plasticity laws and this relation is substituted in equation (2), compli-
cated nonlinear integral egquations result which do not readily admit solu-
tion. These camplications can again be avolded by the process of succes-
sive integrations. The zeroth approximetion for the tobal strains e,

€g; and €, 1is determined by neglecting the integral term, thereby €.

is made equal to f(r)} with similar assumptions for €g and €,- For

these values of total strains the plastic strains are determined as will
be discussed presently. These values of plastic strains are now treated
as known values and substituted into equation (2) to determine first

approximations to total strains €. €gs and €, from which new approx-

imations to the plastic strains can be determined. The process is re-
peated as many times as necessary until succesgive approximstions show
sufficiently 1little change in total or plastic streins to permit being
considered as converged to the correct solution.

It may be noted that the method of successive integrations is not
completely new in application to plastic flow problems. Ilyushin's
treatment of the thin shell (ref. 1) is essentially a successive inte-
gration process similar to thet discussed in this report. Although he
regerded the successive iterations as & series of artificial elastic
problems, the mechanics of the computations are identical to those re-
sulting when the problem is treated strictly in its mathematical sense
of successlive integrations of a nonlinear integral equation. In the
present paper the thin shell problem is treated without the restrictions
imposed by Ilyushin of linear strain-hardening and of complete incompres-
sibility in the elastic-plastic range.
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In order to determine new values for the plastic strains 'Grp and

eep from the values of the total strains €., € and €, as calculated
by equations such as equation (2), a stress-strain relation for biaxial
or triaxisl stresses in the elastic-plastic range is needed. It will be
seen that the validity of the method does not depend on the precise form
of the stress-strain relations, but for illustrative purposes it was nec-
essary to select specific relations. The relations of the deformation
theory of plesticity were therefore used. Appendix B shows that by in-
troducing the concept of equivelent total strein, the plastic strains can
be computed from the total strains in a simple fashion. Thus, the equiv-
alent total strain €op mAY be defined as follows:

Jég szer - 69)2 + (ep - ez)2 + (e - €,)? (3)

Then the plastic strains are given by:

€et

1 eeg
3 e (zer - €

€ = - €
P et 6 Z)
c ) (4)
e, =x-B (2e, - €. - €,)
6p ~ 3 €t ] T 2
where € is the equivelent plastic strain as shown on the uniaxial

ep
tensile curve of figure 1. Furthermore, it is shown in appendix B that
the equivalent total strain €., can be written as follows:

o
2 +v) e + € (5)

€et 3 E ep

where the equivalent stress o, is the ordinate of the unlaxial stress-
gtrain curve as shown in figure 1. Since, for a given value of €.,
o, can be directly determined from this stress-strain curve, equation

(5) permits the direct construction of a curve of &gy against €ep @B

shown in figure 2. The computation of the plastic strains thus becomes
very simple. For a given set of values of total strain, €, 1is camputed

from equation (3). For this value of €gt, € 1is read fram figure 2,
end e€r, and €p, sare then camputed from equations (4). These values
of €, and e, are substituted into equations such as equation (2) to
obtain new values for the total strains €., €4, and €.

P8STI
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In some cases it is possible to expedite the calculetion of plastic
strains for known values of total strains by preparing charts in advance
of the calculation. Use of such charts will be illustrated in the exam-
ples for the thin circular shell.

The question arises as to whether the process is alweys convergent
to the correct solution, or whether it is possible et some point for suc-
cessive solutions to become worse than earlier ones, thus they could lead
ultimately to meaningless results. In all the cases treated in this re-
port it can be shown that the functions appearing in the integrsl equa-
tions satisfy the conditions necessary for the convergence of the process
(ref. 2); hence, the correct solution must result if a sufficiently large
number of iterations are performed. However, for some problems the rate
of convergence may be very slow, and & large number of iterations may be
required to obtain a solution of the desired accuracy. Two devices may
be employed to expedite the convergence. It appears reasonable to assume
that the cloger the initially assumed solution is to the correct solution,
the fewer the number of iterations that will be required before conver-
gence will result. Hence, any lknowledge or insight possessed by the in-
vestigator should be used to estimate the zeroth gpproximstion, rather
then obtaining it by assuming all plastic strains to be zero. Solution
to related problems, solutions by other spproximate or simpler methods,
approximate measurements, physical intuition, or other expedients acces-
sible to the investigator mey all be used to good adventage. For example,
same problems may be formulated in which the stresses will evidently
change little because of plastic flow, and the strains will have to assume
whatever values are necessary to permit these stresses to be generated.
(This is & contrasting case to that of thermally induced stress in which
the strains govern and take on approximately their elastically computed
values, and the stresses adjust accordingly.) In such cases it may be
better to start with an assumed initisl stress distribution, compute the
corresponding elastic strains from the stress-strain relation, and pro-
ceed with successive integrations based on this initial strain
distribution.

Even when no insight into the correct solution is available, conver-
gence may still be expedited by noting essentially the rate at which suc-
cessive iterations change the strain distribution. A formal technique
using this concept is illustrated in this report in connection with the
rotating disk. It also should be noted that, if high-speed computing ma-
chinery is used, the number of successive approximations required for
convergence becomes of lesser importence. The method will now be illus-
trated for four different problems.
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EXAMPTES
Thin Flat Plate
As & first example, consider the simple uniaxial case of s thin in-
finite plete of width 2c with a temperature distribution T(y) across

the width. Under these conditions, the only nonzerc stress is
Oy = dx(y) . As in the usual theory of bending, it is assumed that plane

_ sections remain plane. This requires that -

€ = & + by (8)
where & and b are constants to be determined.

The gtress-strain relation is
1
& =F 9x * o + &g (7)

The boundary conditions require that

fcxdy:o

-C

Lo
-c

Combining equaetioms (6), (7), end (8) gives

(8)

ch(a+by-aT-exp)dy=o
-C

and (9)
C
"[C‘E(a.+by-or.T- )Y &7 =0

T¢ E is constant, equations (9) give

C C
1 i
a‘%,[c‘“mdy*zc\/_:expdy

C C
3 3
b= — oIy dy + = C
3 203 -C

2c -C

(10)

14°7



4.584

NACA TN 4088 7

Also, in this case

€ =¢€
Xp €p (ll)
t.')'e=0'ch
Equations (6) can now be written as folldws:
c
ex-aT=e=% aﬁ.f‘dy+-3y-—3 aTy dy - of +
o a2c e
c c
1 31
2c eep dy + 2a3 eepy dy (12)
-c -c

As a specific example, let

T = 600(y% - 1/3) + T,
E = 28x10°

c =1

o = 9.5x10°8

The stress-strain curve for the material is given by figure 1. Because
of symmetry only half the plate between O and 1 need be considered.
Equation (12) becomes

1
€. - af = e = -0.00570(y° - 1/3) +f e dy (13)
X 0 €p

Equation (13) is now solved by successive approximestions by using
the stress-strain curve (fig. 1). For the zeroth approximetion to the
total strains it is assumed that the total strains do not change much
from those computed "elastically" and, therefore, that €ep 18 every-

where zero. The integral in equation (13) thus vanlshes, and the strains
are computed. This is the elastically computed strain distribution.
With this strain distribution, a filrst approximstion to the plastic

strains eep is obtained directly from the stress-strain curve (fig. 1).

The integral in equation (13) is now evaluated, and & first approximation
to the total strains is obtained. With this first spproximstion, a sec-
ond spproximation to the plastic strains is obtained from the stress-
strain curve. The process is repeated until the desired convergence is
obtaeined. The integral in equation (13) was evaluated simply by the
trapezoidal rule. More accurate evaluation, for example, by Simpson's
rule, can be made if desired.
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The computations for this problem are shown in taeble I, and the re-
gults are plotted in figure 3. The stresses, which are not shown in
table I, can be read directly from the stress-strain curve once the strains
are computed. These calculations show that the first approximstion is
sufficlently accurate and that the total strains are not much different
from those computed elastically. This last result expleins the fast con-
vergence of this method for this prdblem.

If the modulus of elasticity E 1is not constant, no sdditionsl dif-
ficulty is added. Solution of equation (9) gives, for e and b:

[s3 c N
8 = Aj'uZ: EoT dy + AllJZZ Eex:p dy -
c c
AEJ: Eﬂyd‘v'Azb[; Beyy &

(o4 c
b=-Azf Eor,Tdy—.Azf Eeypy &y +
-c -c

C

C
Ag Eqi[‘ydy+A3.-[: Eemydy)

-C

? (14)

where A5, Ay, and Az are numbers which are determined once and for all
for a particular problem from the known variation of E with tempersture:

fﬂyzdy )
Al:j;cEwLCEyzw-(I:Eydy)z

c
nydy
-c
Ap = c c ) 2
VELVETR VD
-c -c -c

c
ViET
-C
Az = c c 2
IVEIRVET
-C -C -C J

Ealal ol
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By using these values for a and b the solution is obtained by succes-
sive approximations as before. Of course, a different stress-strain
curve must be used at every station end is dependent on the tempersture
of that station.

Thin Circular Shell
The second example consldered is that of a thin circular shell with

axisl tempersture gradient. The equations for the total strains, pre-
sented in appendix C, are

5 H/2
w 1 dw 1
€ =VE- -1—2--:‘_';—z+(l+v)cLT+E (exp+veep)dz
-H/2
w
% =-3 > (18)
v 1+ v 1l-2v
eZ__l-v(ex'*'ee)'i'l-vCIT T-v (eKP+69P
where w 1is the solution of
ilf—"’+4 M-d—zg-q (17)
d.x dx

and is glven by

W=clcosxcoshx+ Co cosxsinhx+c:5 sin x cosh x +
X
¢, sin x sinh x - 4.'Bf aT(e)G(x - glde -
o]

fx p(¢) ‘fﬂxz—'—gl ag -fx a(e)a(x - glag (18)

0] dx 0]
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and

G(x - &) = % [%in(x - E)cosh(x - &) - cos(x - &)sinh(x - gEF

1212 B/
P = = (exp + veap)z 3z % (19)

-H/2 J

The term G(x - &) is the Green's function for this problem. Substitu-
tion verifies that equation (18) is a solution of equation (17).

The solution to the problem is now obtained by successive approxi-
mations starting with the assumption thet exp and eep are zero. A

zeroth aspproximation to the total strains can thus be cbtained from equa-
tions (16) and (18). With these values of total strain, first approxi-

mations to the plastic strains exp and eep can be readily obtained

as will be shown. These first epproximations to the plastic strains are
substituted in equations (16), (18), and (19), and first approximations

to the total streains €, €g, and €, are obtained. The process is re-

peated as many times as necessary to give the desired convergence. For
every successive approximation the constants c; to c4 appearing in

equation (18) must be evaluated in order to satisfy the boundary
conditions.

< , have been determined for any iteration, the stress-

strain curve and equations (3) and (4) are used. In order to facilitate

the computation of exp and eep, g cross plot is made of the stress-

strain curve as is shown in figure 2 by méans of equation (5) as pre-
viously explained. The process for cbtaining the plestic strains

and eep from the total strains now becomes relatively simple. For a
given set of strains €., €5, and ¢,, the equivalent total strain ey
is computed by equation (3). For this value of €et’ €ep is obtained

from figure 2, and €, and €, are computed by equations (4). It
should be noted that the curve in figure 2 is very close to a straight
line. The equation of the "best fit" straight line was therefore used

in some of the computations. Representation of the curve by a functional
relation is particularly useful if a given problem is set up for auto- -
matic machine computation. :

To obtain the plastic strains exp and eep once the totsl strains
€s €go and € :
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As an slternate procedure, the plastic strains o and €gp cER
be obtained directly from the total strains € &and € Dby means of a
parametric family of curves as shown in figure 4. For a given pair of
velues of ey - of and €g - of, the plastic strains are read directly

from these curves. Figure 4 was cobtained from the stress-strain curve
(fig. 1) as explained in appendix D. This procedure avoids the neces-
sity of computing €, from the last part of equations (16), e,y from

equation (3), and €p end €&, from equations (4). However, obtaining

a set of curves such as those In figure 5 involves a considerable amount
of labor, and it is usually not worthwhile to make such a chart unless

several similar computations are to be made using the same stress-strain
curve.

It ies to be noted that the stresses can be computed at any step of
the calculation by the stress-strain relatioms:

% -l—_g:—v—z-[ -or,T—%rP+v(ee-aI-eepﬂ

Q
I

. (20)
UG:]_—:TZ.EQ-@-EQP-FV(GX_GT-%@B
The solution will now be illustrated for a specific problem. Con-

sider a thin circular shell with the following geometric and physical
properties:

L = 48 in.

R = 12 in.

H=2 in.

v = 0.3

1=

E = 28x10° 1b/sq in.

o = 9.5x10°8 op~1

T = 2.21x% (corresponds to 350° F rise from

one end of shell to other)

0LxgL 126
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With the stress-strain curve of figure 1 and the following boundaxy
conditions «

w(0) = w'(0) = w(12.6) = w'(12.6) = © (21)

the functions P and Q Dbecome

1
= 21.8 .
2 L (exp + 0 3e9p)z dz

rs
4
(22) b3
1
= 24 €, dz
: fl o2
From the first two boundary conditions, -
Cq = 0
02 = -CS —
Also, the first integral on the right side of equatiom (18) becomes
- b |
4RJ\X ol(E)G(x - £)dE = 0.000252x% + 0.000252 sin x sinh x i
0

Equation (18) now becomes

w(x) = cp(cos x sinh x - sin x cosh x) + ¢, sin x sinh x -

0.000252x% - I;(x) - I,(x) (23)
where
X 3
J; Q(e)a(x - &)ag
X ? (24)
I, = f P(¢) Q—GEE———l ag)
0

For the zeroth approximstion, it is assumed that e and €op and,
therefore, I; and I, are zero. The function w(ﬁ is calcula.ted from
equation {23) with the constants Cp end c4 determined from the last
two boundary conditiods (eq. (21)). The strains e, €, and ¢, are
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then computed from equations (16). First approximstions to €p and
€ are now obtained either directly from figure 5 or by computing €t

from equation (3), reading €ep fram figure 2, and calculating e
and €5, from equations (4). For this particular example figure 5 was

used. For the two examples to be discussed subsequently, equations (3)
and (4), in conjunction with figure 2, were used. With these values of
and €, , P and Q are computed from equations (22), w from equa-

tions (23) end (24), and new values of €., €, and €, from equations
(18). The process is repeated until convergence is obtained.

Wherever derivatives of w are needed such as in the first part of
equations (16) and in equation (21), the following relations are useful:

aty * ac £ )
- =f a(s) L= -8) 4
0
aT 3 -
&_g =\[X P(g) i&gﬁ_‘?’_gl ae
b dx
(2s5)
a%1 x 2
1 a“g(x - E)
—= _f afe) 7 4t
ax o dx
X
—2 = -4 Ple)afx - g)ae + Plx)
0
/

and

ae(xd; E) _ % sin(x - &)sinh(x - &)

_g._.__lde x-8)_1 Esin(x - &)eosh(x - &) + cos(x - &)sinh(x - g}l}(%)

ax2 2

dngx - &) cos(x - &)ecosh(x - &) J

axo
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The integrals in equations (24) end (25) were evaluated using the
trapezoidal rule. Thus, in order to evaluate the integrals at a station
X = XJ,

X
f ! £(8)F(x, - g)dngsz'- EF+ EF 1+ EF g p +en ot £y Fi b3 f‘jFo)
0

(27)

The results for this problem are shown in figure 5. An abbreviated
calculation setup for one of the successive gpproximations is shown in
table I(b). As many as seven successive spproximations were carried out
as shown in the figures, and the differences between the seventh and the
fourth gpproximetlons are very smaell. From an engineering viewpoint the
first spproximation is actually sufficient. Agsein, the total strains

did not change very much, which explains the relatively rapid convergence.

Long Solid Cylinder

The plane strein problem of a long solid cylinder with a radial tem-
perature distribution is considered next. Appendix E shows that if the
modulus of elasticity E is assumed constant, the total strains are
glven by

\
1+

r r
v 1 l-2v 1
€6=l_vr2£ mM+T——y21_v;§£ (F—rp+eep)rdr+

r 1- l-v rp 1 -v r
R R ?(28)
e, =2 ofr ar - (e, + e, )r dr
z2 g2 rp op
0 0]
R R c - e
C. = l-3v 1 ofr dr - 1l - 2v _rp - “Op 3r +
11 -9 R2 2(1L - v r
(o] 0

P8S7
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Equations (28) are now solved by successive approximations as for
the previous examples. The zeroth approximstion to the total strains is
obtained from equations (28) by assuming that €p &nd €5, are zero.

The total equivalent strain is then computed by equation (3?, the equiv-
alent plastic strain is read from figure 2, and first approximations to
€pp &nd &g, are obtained from equations (4). These values of

and €, are substituted into equations (28), and new approximations
are obtained for e,., €, and €,. The process is then repeated as many

times as necessary to obtain the desired degree of convergence. The
stresses can be computed at any time fram the general stress-strain

relastions:

o, = Me, + €5 + €, - 3aT) + 26(e, - of - erp)
0 = Me, + €5 + €, - 3al) + 2G(eg - ol - eep) (29)
UZ=7\(er+ee+ez-3cx£E)+2G(ez-am+erP+eep)

The above calculations have been carried out for a l-inch-radius
cylinder with a temperature gradient as shown in figure 6 and by using
the stress-strain curve of figure 1. The computations are shown in
table I(c) for ane iteration, and the results are plotted in figure 7.
Little difference occurred between the fourth and fifth approximations.

Rotating Disk with Temperature Gradient
As a final example the plane stress problem of a parallel-sided ro-

teting disk with a radial temperature gradient and a constant wvalue of
E will be considered. In this problem the strains are comnsiderably
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larger than those in the previous examples. The total strains for this
case, as shown in appendix F, are given by '

)
e = - l-v paar l+vf(ﬂ‘rdr+ f EE Edr+
r
1+ v
(e + € )rdr+—
Zrzf 6p 2
0
2 2l
- . 1 - v p%r
€. = -€y - = 5 +(l+v)a,T+erP+ve9P+
Te. -¢
(1-v)f —@—Tfﬁar+cs )
0
R l+v _l-zv
€, = l-v(€r+€9)+l-va'T = (erp"'eep)
o R Re c
03=2(l-v)—R 3‘+Vpa>2‘fi2+—— ofr dr - & R OR gy
E RZ 2 r
0 0o
1 R
—_— (€, + €4 )r dr
(30)

The solution to this problem is obtained by successive approximation
exactly as in the previous example for the solid cylinder. By starting

with assumed values of € end € equal to zero, €., €43, and €
6p » Srr =@ Z

are computed from equations (30), €.y from equation (3), €ep from fig-
ure 2, and €., &nd &5, fram equations (4). New values of €., €g;
end €, are now obtained from equations (30), and the process is
repeated.

A solution was obtained in this manner for a 1lO-inch-dismeter disk

with a temperature gradient as shown in figure 8. The value of pcnz was
taken as 1500, and the stress-strain curve of figure 1 was used. The
computations for one iteration are shown in table I(da), end the results

FOCH
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are plotted in figure 9. In this problem, the strains are relatively
large, with the maximm equivalent strain close to 1 percent. A straight-
forward application of this method therefore requires approximately 40
iterations in order to obtain accuraste results. However, the convergence
can be greatly increased by performing three or four iteratioms, teking
the differences between successive lterations for the various strains,

and extrapolating to a zero difference as shown in figure 10. A root-
mean-square line is drawn, and the intercept at zero Ae d1s obtained.
This furnishes a new starting estimate. Three or four more successive
approximations are carried ocut, and another similar extrapolation is made.
This technique reduced the number of successive gpproximations for this
probiem from gbout 40 to about 12.

This same problem was solved by the trisl-and-error method of ref-
erence 3. The results obtained were almost identical to those obtained
herein &s can be seen in figure 9.

DISCUSSION

The speed of convergence of this method depends primarily on two
factors: +the amount of plastic flow occurring, and the number of stations
teken in the plastlc region. For small plastic strains convergence will
be relstively fast. Similarly, for a small nmumber of stations in the
plastic region relatively few iterations are needed. If the number of
stations is incressed, more iterations are needed for comvergence to
occur. Thus, for the case of the thin shell of the second exsmple, dou-
bling the number of stations approximstely doubles the number of itera-
tions required for convergence. This is due to the fact that a change in
the approximation at one station chenges the values at all the other sta-
tions, and the more stations there asre the longer it tekes for all the
stations to converge.

Increasing the number of stations therefore increases the labor re-
quired for two reasons: the time per iteration goes up, and the number
of iterations required increases. Of course, the greater the number of
stations used, the greater is the final accuracy attainable. However,
good accuracy cen be obtained without increasing the lsbor grestly by
following one or both of the following techniques. A calculation is made
with a small number of statione to cbtain an approximate plastic strain
distribution. This straln distribution is then used as a first approxi-
mation in a new caleunlation using more stations. Also, an extrepolation
technique such as shown in the rotating disk example can be used to speed
up convergence greatly. It should be noted that doubling the number of
stations for the thin-shell problem increased the lsbor greatly, but the
maximm stress was changed by only sbout 2000 pounds per square inch.
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An interesting possible application of the results of the method
presented herein masy be worth further investigation. It has been found ~
that, for thermal stress problems without additional loads, the total
strains do not change very much because of the plastic deformation com-
pared to the elastically computed strains and that the first approxi-
mation to the stresses is thus usuelly fairly good. This leads to the
possibility of determining semiempirically the plastic thermal stresses
in complicated structures for which even the elastic stress distribution
cannot be calculasted and for which strain measurements cannot readily
be made in the plastic reglon and at high temperatures. A model of the
structure can be constructed, and temperatures and temperature gradients
can be simulated on a proportionally reduced scale so that no part of
the model flows plastically. The totel elastic strains under these con-
ditione can usually be readily measured by mesns of strain gages. The
elastic strains can then be extrapolated by simple proportion to those
that would exist at the higher temperatures and gradients actually ekilst-
ing in the structure. By assuming that the total strains are then equal
to the strains that would exist if the material remsined elastic, the
plastic strains sre computed from equations (3) and (4) and the stress-
strain curve, and an estimate of the stresses is obtained from the stress-
strain relations such as equations (29). From the examples presented
herein, it would seem that the stresses computed in this menner should
be accurate enocugh for many engineering applications.

In many practical problems it is necessaxry to take into account pre-
vious plastic flow that msy have taken place. Thus, for example, in a
thermal shock experiment, plastic flow msy start at some time during the
guenching process, and the material may continue to flow plasticelly as
the process continues. A solution must therefore be obtained at various
time Increments from the start of the queanch, and for each time interval
the plastic flow that has already occurred up to that time must be taken
into account. Treatment of this case is desecribed In detail in appendix
G.

Although the method has been presented for four specific thermal
stress problems, it is apparent that it is general in nabture and can be
applied to & large variety of problems for which the solutions of the
elasticity equations are available. No implication is intended, however,
that this method is necessarily more accitrate or faster than other meth-
ods that might be used for specific problems. Thus, the example of the
rotating disk with tempersture gradient can be treated more rapidly by
the method of reference 3. The method of this report does, however, pro-
vide & uniform simple approach that can be used for many different types
of problems. It is not necessary, therefore, to develop special methods
and techniques to handle different types of problems.

Finally, it should be pointed out that, although for uniformity and
simplicity the method has been set up by using the equations for total
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strains (e.g., eq. (2)), it may be desireble in some cases to deal with
the equatlons for stress which can be put in a similar form. Upon deter-
mining 0., Oy, and o, for €., = €y, = O (i.e., the elastic stresses),

the elastic total strains can be computed by Hooke's Law. For these
total strains the plestic components are evaluated as described earlier,
and a first iteration for stress is obtained. Subsequent iterstions nsy
follow the same procedure by using as the plastic strains the values de-
termined from the previous iteration. In those cases where it is sus-
pected that the elastic stress distribution is likely to be less affected
by the plastic flow than the strain distribution, the plastic strains are
determined directly from the stresses and the stress-strain relations as
given in sppendix B.

SUMMARY OF RESULTS

A method has been presented for solving plastic deformation problems
in the elastic-plastic range. The method, one of successive approxima-
tions, is illustrated by four exsmples which included a flat plate, a
thin shell, a solid cylinder, and a rotating disk. It was found that for
thermal stress problems accurate enswers could be cbtained with relatively
few successive gpproximations. A technique for speeding up convergence is
also shown.

Lewig Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Chio, June 20, 1957
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APPENDIX A

SYMBOLS
Al’AZ’AS constants
a,b constants
Cl,Cz,65,04 integration constants
c half width of thin plate
Cq,C5,C3,Cy integration constants
E modulug of elasticity
G Lemd's constant, =y

2T+ v)
G(x) function
E thickness of thin shell
h thickness of rotating disk
1,5 integrals )
KX, constents (egs. (B6))
L length of thin shell
A characteristic length of thin shell, ﬁ&——BEEE—E—
3(1 - v©)
P(x) function
Q(x) function
R mean radius of shell, or radius of solid cylinder
r radial distance to arbitrary point in solid cylinder
or rotating disk

T temperature ebove arbitrary zero
TO arbitrary consgtant temperature

u axial displacement of point on middle surface of shell
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€

€
ep

et

& €97€z7 8y
“xp’ “op’ “zp’ ®rp
6

A

21

radial displacement of point m middle surface of shell,

positive inward

ratio of axial coordinste of shell to characteristic
length, or axial coordingte of thin plate

distance along width of thin plate

radial coordinate of thin shell measured from middle
surface, positive inwerd, or axisl coordinste of
long solid cylinder

linear coefficient of thermal expansion

conventional strain in tensile test

equivalent plastic strain

equivalent total strain

strains in x~, 8-, z-, and r-directions, respectively

plastic parts of e, €9, €5, and €,, respectively

pald

tangential coordinate

vE
Lamé's constant, T -5y

Poisson's retio
integration variable.
density

equivalent stress

normal stresses in Xx-, 6-, r-, and 2z-directions,
respectively

rotational speed of disk
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APPENDIX B

CALCULATION OF PLASTIC STRAINS

The deformation theory of plasticity is used with the three usual
agsumptions that the directions of the principal strains coincide with
the directions of the principal stresses, that the ratios of the prin-
cipal shear strains are equal to the ratios of the principal shear
stresses, and that the volume remains constant in the plastic range.
Thege assumptions imply

€. - S _ €. - €, } € - €, -
Op -~ Og Op -0y 0Og=-0gp 1 (B1)
erp + eep + ezp =.0
By substituting the stregs-gtrain relations \
1
er=§|:"r'v(°9+dz)]+€rp+‘ﬂ
1
ee-EEre-v(cr+cza+eep+o.T? (B2)
e, == |o - v(o,. + 05)] + €,, + T
zZ E |z r e Zp J

into the first pert of equations (Bl), it can also be shown that

erD_EQP=GTf'P-€§B=€9P-e§P=K2 (BS)
Ur - 0'9 O'r - O'Z 0'9 - 0'Z
where
l+ v
Kl = Kz + E (Bé:)

857
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Define

Q
I

> (B5)

1 2 2 2
e 75 /\ﬁcr - 05)% + (o, - 0,)% + (05 - 0,)
z
32 ,\/(erp - eep) + (erp - <-:Zp)2 + (eep - ezp)z
€ == pfef +e e, + €
e0 = /5 N\[ro T S T Sep
2 2
€ot = —33@ /\ﬁer - &)" + (e - ez)2 + (g5 - ¢€,)

Then, by squaring and adding the equations in (B1l) and (B3) it readily
follows that

m
1]
ct

Kl =

ol el

olos
alm Q
o lo o

(B6)

K, =
Hence, by the relation between K, and X, in equation (B4)

_Mie_.{_e (5)

€t = 3 7 ep

The plastic strains can be determined in terms of the total strains by
dividing equation (B3) by equations (Bl) and applying equations (B6):

€

rp'GQp=€rp'ezP___€9P-€ZP=&=_eg (B7)

€ - g € - € €g - € K €

€

Solving equatiom (B7) and the incompressibility relation in equations
(B1) results in equations (4).
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APPENDIX C

EQUATIONS FOR THIN CIRCULAR SHELL

The equilibrium equatioms for a thin circular cylindrical shell are
glven in reference 4:

N, =0
g 4oM, (c1)
272 *N =0
1° dx
where
H/2 \
N, = o, dz
X g/{;/z *
H/2
Ny =f gg dz ) (ca)
-H/2
H/2 :
= o,z dz
" =Jq o % J
The stress-strain relations, including the plastic strains, are
o, = —= -al -e_ +v(e, - af - e,.)
X 1 - VZ o Xp 7] op
. (c3)
GQ:l-vz Ee-a,‘l‘-eep+v(ex-am-exps_l
The strain displacement relations are N\
c du dzw z
X 1 dx 32 g¢a
(c4)
¢ = . X
8 "R
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Substituting equations (C4) into (C3) gives

[~ 2 D)
E du d"w w
g, = - z - al - +v(--—-e -a.T)
T TE T 2 g2 xp R~ “ep ]

- (05)

ag = Ez-%—G,T-eep+v(zdgx-gzwzz-oaT-gcp
1l - L 17 dx J

From the first equation of equations (Cl) and (C2),

B/2

du W 1

T&=V§+(1+V)“T +E\/-;/2 (gcp+veep)dz (ce)
\

H/2
- v, 1
Np = -EH<R+HL/2 eepd.z+cLT)
> (C7)
H/2
2
My = - e zng’ Ez (exp""eep)z‘iz
12(1 - v) 1" &® 1-v L5 /2 )

Substituting equation (C6) into the first of equations (C4) gives

H/2 2
W 1 dw
& =VE+ (1 + v)aT + ﬁg,[];/z (c—:xp + veep)dz - —22 = z (C8)

Also, from the second of equations (Cl),

2 /2
4 2 52
SV | 4w = 4R - 1B & (exp+vee)zc'iz—g €gp 4z
d.xé B dxz i H
-H/2 -H/2
(c9)
To obtain €., the third stress-strain relation is used:
€, =% EIZ - v(o, + 0g) + €p + ocr] (c10)

Substituting o, = O and equations (C3) into equation (C10) gives the
third part of equations (16).
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APPENDIX D

PLASTIC STRAIN CHARTS

In order to cbtain the chart shown in figure 4, the stress-strain
relations with O, = 0 are written as follows:

1
€, - af = = (o, -_yoe) * €y

E
1 (p1)
€g - of = % (og - vo,) + €op
Also,
2 % . .
g, =< ~— (2e__ +
X 3 eep ( XP_ eep)
, o (p2)
e
6, ==z — (2€5. + €_)
0~ 3 €ep GP;' Xp
Substituting equations (D2) imto (D1) gives
- g - o
€ —oqp=l1+2 (2 - v) % .2 (1L -~ 2v) Y% .
X 3 E €ep 3 E €ep 6o
2 (2 -v) % 2 (1L - 2v) % (23)
- - 2v
€ ~al=|1+<% —_—| €q. + 3
9 37 E eep] o0 "I B e ¥

With the sbove equations and the stress-strain curve for the mate-
rial, a two-paremeter family of curves can be plotted giving the total

strains for any palr of plastic strains €xp and €op° Thus,
(1) An arbitrary convenient value is chosen for €op-
(2) A series of values are chosen for €p+ For each of these values,
(a) Compute €ep from equaticns (B5).
(b) Read % from the stress-strain curve.

(c) Compute €, - o and €5 - of from equations (D3). Thus,
one curve of the family is obtained.

(3) To cbtein the other curves, new values are chosen for &g, and
the process is repeated in each case.
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The limiting curve of zero plastic strain is an ellipse about the

origin as shown in figure 4.
to zero plastic strain.

Any point inside this ellipse corresponds
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APPENDIX E

LONG SOLID CYLINDER

Consider an infinitely long circular cylinder which has a radisl
temperature distribution T(r). The equilibrium equation is

do o - g, - __
+ =0 (E1)

|d€6

” 9=r-(§.-1‘—.- (EZ)

Substituting equations (29) into (El), assuming E comstant, and elim-
ingting €, Dby use of equation (E2) give :

a j1éd 1+ T 1 -2v 1 d 1 - 2v €
—E—(rzeeﬂ =———{-ou——+—————(rerp) - —EE(ES)

1l.- dr l1-v »dr

Integrating equation (E3) results in

r
_l+v 1 -2v 1
=T -V f G’Trdr-l-l-erf Cppt 4r +
0]
Co
l-ZVlf fudrdr+cl+— (B4)

For a solid cylinder C, must equal zero. Also, equation (E2) can be
rewritten as '

1l 4 2
€. = -€ + T = (req) (E5)

By using equation (E3), equation (E5) can be written as:

r
_ 1+ v 1~ 2v 1 -2y €rp ~ Sop
er—-e6+l_va.’.l’+————l_verp+———-l_v T dr+zcl
0
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To determine €,, use is made of the fact that €, 1is a constant and

that
R
f o,r dr = O (B7)
o}

Substituting the last of equations (29) into (E7) and using equations

(E4) and (E6) enables ¢, to be determined. To obtain C;, the surface
boundary condition 0,.(R) = O is used. Substituting the first of equa-

tions (29) into this relation ensbles C; to be calculated. The final
results are given in equations (28).



30 NACA TN 4088

APPENDIX F

ROTATING DISK

The derivation of the equations for the rotating disk with a radisl
temperature distribution is very similar to the derivations of the equa-
tions for the long solid cylinder (appendix'E) . For the disk problem,
the axial stress o, 1is assumed to be zero, and the axial straln e

is no longer a constant. The equilibrium equation for this case is

Z

£ (nro,) - ho, + pohr? = 0 (F1)

The competibility equation is the same as equation (E2), and the stress-
strain relations with o, equal to zero become

E

a
l-vz

r

Er + vey - (erp + veep) - (1 + v)mﬂ

(F2)
I
0'9 = -i—-—v—z- Ee + V€, - (€9p + VErP) - (1 + V)CI,T]

For a parsllel-sided disk with E assumed constant, the solution

is readily obtained. Substituting equations (F2) into (Fl) and using
equation (E2) result in

2
g |l1g (rzee)]=_;;v_pmzr+(l+v)i@_l+

ar | r ar E ar
& Srp ~ ep
= (erp + veep) + (1 - v) 7 (F3)

and, after integrating,
r r
2 2,2 €. - €
(1 - v*) p°r 1+ v 1-v €rp ~ Cop
€y = - o 5 + -z olfr dr + 5 - dr +
0 0
Cz C

1+ vfr 4
r{e_ + e, )dr + — + — : : (F4e)
Zrz 0 rp ep 2 r2

? i
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where for a solid disk C, must vanish. To obtein e€,, equation (F4)
is substituted into equation (E2) resulting in

2 2l
_ 1l = v& p°r
€. = -6 - % =— + (1 + v)ol + €rp + Vegp +
Te
(1-v) t —I'P—-r—eﬁiEmc+c3 (F5)

The term €, can now be computed from equations (B2) with o, taken as

zero. Thus,

_ v _1-2v 1+v
ez—-l_v(er+ee) ———l_v(erp+eap)+———l_va£[‘ (F8)

The constant Cz 1is evaluated from the known rim loading. If the rim

stress due to the rim loading is 0.(R), the first of equations (F2)
becomes

B
0.(R) = ——
r l-v2

|:er + veg + (erp + veep) - (1 + v)or,ﬂzl (F7)

=R

Substituting equations (F4) and (F5) into equation (F7) enables Cz to
be calculated. The final equations are given in equations (30).
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APFENDIX G

EFFECT OF PREVIOUS PLASTIC STRAIN

If the body under consideration has undergone previcus plastic
strain such as that during a thermsl shock in which the stresses and the
plastic deformations vary with time, a complete series of solutions must
be carried out for successive time Intervals. The equations for the
strains remain the same except that each plastic strain texm such as
erp is replaced by Zerp + Aerp, where Zerp is the total accumulated

plastic strain up to the previous time and Aﬁrp 1s the additional plas-

tic strain during the time interval under considerstion. These strains
Zerp and Eeap are known from the previous calculations, end the total

strain equations are solved by successive approximation to obtain the
change in plastic stralns Aﬁrp and Aﬁep as well as the total strains

after the new time interval.

857 |

In carrying out thils type of calculation for successive time inter-
vals, & time may eventually be reached when some point in the body begins
to unload, that is, o, starts decreasing. When this time is reached,
no additional plastic flow will teke place at this point, and unloading
will proceed along an elastic line such ag CC' in figure 1. At this -
station then, the plastic strains are assumed to be zero from this time
on. The successlve gpproximations are continued in the usual manner until
all points in the cylinder begin to unload or equilibrium conditions are
regched.

This type of preocedure of edding the plastic flow occurring after
each time increment to the previocusly accumulated plastic flow is equiv-
alent to the assumption that, as the load and temperature change, the
gtress position on the new stress-strain curve would be the same as 1If
g test specimen were loaded above the yield point, the load removed, the
temperature changed, and a new load applied. This assumption is illus-
trated in figure 11 in which point A represents a loading at the first
temperature conditions; the dotted line AB represents the unloading path;
the curve BCD shows the stress-strain curve et the new tempersture; and
point C gives the new stress position. The total strain at this point C
is glven by the sum of three strains: +the residual strain caused by the
first loading, the elastic part of the strain caused by the second losad- i
ing, and the plastic strein caused by the second loading. T

When the foregoing procedure is applied, the curve BCD must, of
course, represent the true stress-strain curve at the new temperature of
a material that has already been subjected to the plastic cycle QAB. In .
general, this new stress-strain curve is different from the stress-strain
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curve at the given temperature of a material that has not been subjected
to plastic flow. However, unless data are available, it mey be necessary
to assume that the curve BCD is the stress-strain curve at the given
temperature of a specimen of virgin materisl. Resulis cbtained in thils
way, however, should be treated cautiously since this effect may be
apprecisble.
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TABLE I. - PLASTIC FLOW CALCULATIONS

(a) Flat plate

Station| y tep e %p & gap £ Ean £ %p s &
(Ba. (13)) (pig. 1) |(Ba. (13))] (psg. 1) [(Ba. (13)) (Pig. 1) [(Ba- (13))| (p1g. 1) |(Ba. (13)) (Fig,pl)
1 o | o | 1.9a0"5]| 0,72a0-3] 1.7x10-3| 0.5x10~3| 1.6x10-3| 0.4x10-3| 1.6x10-3| 0.4%0-3| 1.6x10-3| 0.4x10~5
2 1{0 1| 1.8 .B 1.8 .4 1.5 oA 1.5 & 1.5 -
3 21 0 1.7 5 k.5 Y-S 1.4 »3 1.4 .3 1.4 .
4 30| 1.4 ] 1.2 .2 1.1 .1 1.1 .1 1.1 .1
5 4| O 1.0 o} .8 0 i ‘0 .7 0 o7 ¢}
6 5| 0 5 Q 3 0 -2 o] .2 0 .2 D
7 5] 0 -2 o) -.4 0 -.4 0 -.5 Q -.5 Q
] 110 | -.9 0 1,1 -1 -1.2 -2 -1,2 -2 -1.2 -2
g .8| 0 |-1.7 -.5 -1,9 -.7 -2.0 -.8 -2.0 -.8 -2.0 -.8
10 970 |-2.7 -1.5 -2.9 -1.6 ~3.0 =1.7 -3.0 -1.7 -3.0 ~1.7
11 1.0} 0 |-3.8 -2.5 -4.0 2.7 -4.0 =-2.7 -4, ~2.8 -4,1 -2.8
(b) Thin shell B8-1
MBtAtion]| * T o ¥ L v G ~of | & -of ™ L 3 3 5 7 ]
@rf?é‘w (pravioes | Gravious | (praviens o0 (B txn. any| (ke (1)) | (m2e73) | (rsec®) e [ @ . ) | (. 20
majion) maticn
20 |m,97)2.0 |-5.000x10°3] o.msoxacS|-o.e00auY —£4.24x078] -s01, 00074 -0.00372 1.59:10'# 1.6 0,800x10~Y -0, 7802 | -0.05893) -0,008005 .nn.u:ao_" -sas, mao-8| o, 01414
- 5087 400 - TT0 1.110 508 - T4S
-« 3533 420 -aT4Q 9100 AL - TOR
° 306 —Tes 7088 0 -.e70
~338% 310 -.T10 L5100 X710 -850
Joanr 280 -.700 L X100 200 T
1.0 .28 -85 L +1000 155 —.430 L
a  |e.s0la.0  {e5.553 5,20 -2.,500 -1115 1952 ] 4. 404 -3.535 -3, 360 2,800 -0.1180 | 0.06130 {1045 -6 o
-, 007 «Ll.57 2,870 j-2.490 ), 508 -2.2080
—. 5583 =178 -e.0Ts -.5700 175 -2.078
° .840 -0z 1,34 5906 ~2.080
zxem z.am Lo xon 2270 2,985 ~2.335
607 3.800 |-2. T80 s.190! 4.000 -2.788 i
1.0 £.500 860 L L L 1.110 5.800 -2,880
“1o ealoulabing ¥, oy and a; are swleclated frow eq. (R1) by ueing ses, (85) xad (%),
L ] r L] [} " r
_| ! T 1 ' Lo o m

g80% NI VOVN
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TABLE I. - Concluded. PLASTIC FLOW CALCULATIONS
(¢) Long solid cylinder
Station| » aT e top Ep ) Eg, ot %ep Erp “op
(Previ- [(Previ- (Bq. (28)){(Eq. (28))((Ba. (28))|(Eq. (3)) |(Fig. | (Ba. | (Eq.
ous ous 2) (4)) (2))
approxi-approxi
mation) tion)
1 o 9.50X10~3 0 0 9.457x10-3]9,457x10~3|8.912x10~3|0.363x10~3| 01.0-3| 0x10~3| 0x1.0-3
2 .75 | 9.50 4] 0 9.462 9.452 0 . 363 0 0 0
3 .80 [ 9.29 0 0 9.085 9.439 0 .310 0 0 0
4 .85 | 8.81 0 0 8.240 9.583 0 .688 Q 0 0
5 .90 |7.68 0 0 6,238 9,299 0 1.926 0.91 |-.907 | 0.545
6 .95 |7.08 0 0 ls.274 9.109 0 2.494 1.40 |1.3%97 754
7 1.000{6.83 0 0 5.045 8.911 0 2.578 1l.48 4.477 . 138
8-13
{d) Rotating dtak
ai_ra o -~ —m 3 Fpy 3 =_ ) E " E__ T _
o LA L1011 L Wl "Ilp = -r -9 -E “at -ep *rp _ep
(Previous | (Previous [(Bq. (30)) |(Eq. {30))|(Eq. (30)) | (Bqa. (5)) | (Fig. 2) | (Eq. (&)} | (Bq. (4))
approxl- approxl-
matlon} matlon)
1 0 0.95%1073(1.567x10-3 | 1.587x10-3| 5.757x103|3.757x1075 |-3.247x10~3| 4. 689%10-3| 5,441x10-F] 1.720x10-3| 1.720x10"3
) .5 1.045 |1.515 1.517 5.780 5.784 ~E.0%53 4.543 5.517 1.657 1.880
3 |1.0] 1.35 1.459 1.361 5.983 5.845 -2.490 4.270 5.048 1.573 1.474
4 |1.5] 2.71 1.376 1.144 * | 4.250 5.042 -1.776 5.919 2.721 1.488 1.252
85 | 2.0] 2.47 1.258 .7269 4.862 4.104 -.3885 5.277 2,124 1.2¢98 8067
g |2.5| 3.80 1.089 L1111 6.022 4.381 1.913 2.389 1,304 1.047 ,1808
7 |s.0] 5.418 |1.070 -.4288 7.614 4.797 4.371 2.035 .9972 .5899 -.3908
s |3.5] 7.315 [1.410 -1.175 9.773 5.362 8.964 2.578 1.469 1.571 -1.142
s [4.0] 9.5 1.904 ~2,298 12.28 8.076 10.00 3.623 2.448 1.908 -2.279
10 |4.5(11.88 2.200 -3.637 14.83 8.911 15.51 4.998 5.664 2,303 -3.820
11 |5.0(14.25 2.498 ~4.996 17.18 7.824 17.18 6.235 4.9682 2.491 -4.982
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Figuré 1. - Typical stress-straln curve for 18-8 stainlesg
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strein based on stress-strain curve of figure 1.
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Figure 3. ~ Variation of stress and strain along
flat plate for successive approximations. Tem~

perature given by T = 600(y2 - %) + Tp.
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Figure 3. - Concluded. Variation of stress and strain along
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by T = 600(y% - %) + Tg.
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(a) Axial stress on outside surface of thin shell.

Figure 5. - Variletlon of stresses and strains on shell with axial dis-
tance measured in terms of characteristic length.

bution, T = 2.21x<.
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ture distribution, T = 2.21x<. o -
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Figure 5. - Continued. Variation of stresses and stralns on shell with
axial dlstance measured in terms of characteristic length.
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Figure 6. - Radial temperature distribution in long solid
cylinder.
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Figure 7. - Straln and stress distributions in long solld
cylinder with radial temperature gradient.
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Figure 7. - Concluded. Strain and stress distributions in long
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Figure 8. - Tempersture distribution in rotating disk.

45214



Cco=-7

NACA TN 4088

STRAIN, €

L )

008

006

004

002

-3
018XI0 7 APPROXIMATION
ZEROTH
~— —— FIRST “r
ol6 — — FOURTH 74
- —-— TWELFTH WITH INTER- /
MEDIATE EXTRAPOLA-
TION, OR FORTIETH
WITHOUT EXTRAPOLA-
0ol4 TION y
o METHOD OF REF. 3 /
I T /
012 /
0l0

RADIUS, IN.

(a) Strain.

5

Figure 9. - 8Straln and stregs distributions in rotating disk with
temperature gradient. pmo™ = 1500,

49



50

NACA TN 4088

Fi

(b) Stress.

gure 9. - Concluded.
disk with temperature gradient. pmz = 1500.

120x103
ey
80 \\\\\
e — — 3

40P—" =
—_ ~ ~
P ;\%" \\

b O \ﬁ§
Oy
(]

-40 N
bCD X \s o
] ~ %
(4]

(7))
W -g0
& APPROXIMATION
o ZEROTH
~—— FIRST, \
-120 — — FOURTH
—-— TWELFTH WITH INTER-\
MEDIATE EXTRAPOLA- \
TION, OR FORTIETH
WITHOUT EXTRAPOLA- \
-160 TION
o METHOD OF REF. 3
- 2005 l 2 3 a4 5
RADIUS, IN.

Strain and stress distributions in rotating



NACA TN 4088 51

- 5.2X]03
(o) er

5.0

4.8 \

S~
=

N\
4.6 N

STRAIN, €

4.2

4.05 04 08 12X10°3
Ae

Figure 10. - Varliation of strain with
change of straln for four successive
approximations for, rotating disk
with temperature gradient.



52

STRESS, o,

NACA TN 4088

CS-13085

STRAIN, €

Figure 11. -~ Unisaxial stress-straln curves showing
components of straln when plestic flow occurs a
second time.

NACA - Langley Field, Va.



